CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services

Project description


Cloud computing emerged as the leading technology for delivering reliable, secure, fault-tolerant, sustainable, and scalable computational services, which are presented as Software, Infrastructure, or Platform as services (SaaS, IaaS, PaaS). Moreover, these services may be offered in private data centers (private clouds), may be commercially offered for clients (public clouds), or yet it is possible that both public and private clouds are combined in hybrid clouds.


These already wide ecosystem of cloud architectures, along with the increasing demand for energy-efficient IT technologies, demand timely, repeatable, and controllable methodologies for evaluation of algorithms, applications, and policies before actual development of cloud products. Because utilization of real testbeds limits the experiments to the scale of the testbed and makes the reproduction of results an extremely difficult undertaking, alternative approaches for testing and experimentation leverage development of new Cloud technologies.


A suitable alternative is the utilization of simulations tools, which open the possibility of evaluating the hypothesis prior to software development in an environment where one can reproduce tests. Specifically in the case of Cloud computing, where access to the infrastructure incurs payments in real currency, simulation-based approaches offer significant benefits, as it allows Cloud customers to test their services in repeatable and controllable environment free of cost, and to tune the performance bottlenecks before deploying on real Clouds. At the provider side, simulation environments allow evaluation of different kinds of resource leasing scenarios under varying load and pricing distributions. Such studies could aid the providers in optimizing the resource access cost with focus on improving profits. In the absence of such simulation platforms, Cloud customers and providers have to rely either on theoretical and imprecise evaluations, or on try-and-error approaches that lead to inefficient service performance and revenue generation.


The primary objective of this project is to provide a generalized and extensible simulation framework that enables seamless modeling, simulation, and experimentation of emerging Cloud computing infrastructures and application services. By using CloudSim, researchers and industry-based developers can focus on specific system design issues that they want to investigate, without getting concerned about the low level details related to Cloud-based infrastructures such as Virtual Machines and Containers. CloudSim now support simulation of SDN and containers.

Project team

Leader: Rajkumar Buyya

Other projects

Networks and data in society projects

Research Centre

Cloud Computing and Distributed Systems (CLOUDS) Laboratory


Computing and Information Systems


Networks and data in society


cloud computing